EH;&EIIEIN

::::::::::::

From Vibe coding to Al assisted

spec driven Q@ment —
(R

Principal Consultant at GRADION

January 2026

GRADION

scaling business

Takeaways e Understanding what Vibe Coding means

e Understanding the basic elements of LLMs and their attributes
e Understanding the importance of context

e Understand what Spec Driven Development is

e Getan impression about how coding this way looks

e Getan overview over the tooling landscape (January 2026)

GRADION | Scaling Business

GRADION

zoaling business

The different types of Al

Types of Artifi

ial Intelligence

By Capability
Narrow Al (ANI) General Al (AGI) Super Al (ASI)
Specialized in one task Human-level intelligence Exceeds human intelligence
Examples: Siri, Chess Al, Can leam any task Self-aware & improving
Image Recognition Status: Theoretical Status: Hypothetical
By Functionality
Reactive Machines Limited Memory Theory of Mind Self-Aware
No memory, 12acts to Uses past data for Understands emaotions Has
eurrent input anly short-term decisions and Inentions eonsclousness
Ex: Deep Blue Ex: Self-driving cars Status: In development Status: Future

By Application Domain

Machine Learning
Learns from data
withaut explicit
programming

Deep Learning
Neural networks with
multiple layers.

Ex: Image, Speech Al

Natural Language
Processing
Understands human
language

Computer Vision
interprets visual
infarmaticn
Ex: Facial recagnition

Expert Systems
Rule-based decision
making syztems

Neural Networks
-

Robotics Al

Physical interaction
with enviranment

Generative Al
Creates new cantent
Ex: ChatGPT, DALL-E

GRADION

A typical LLM Agent

Prompt Recipe

Typical LLM Agent Structure

Mandatory Component Instructions Persona

. Optional Component

Prompt Recipe guides how the agent
will proceed with the task and how
to process the output

LLM g .
Agent must generally interface AGENT 1 Inrerfce
with a Human, another agent or an
API

Agent can generate "memories" as
well has access to specific domain
knowledge and tools

Knowledge

PromptEngineering.org

The currency of AI Models

Tokens

04

Characters

382

We're no strangers to love
You know the rules and so do I (do I)
A full commitment's what I'm thinking of

You wouldn't get this from any other guy

I just wanna tell you how I'm feeling

Gotta
Never
Never
Never
Never
Never
Never

Text

make you understand

gonna
gonna
gonna
gonna
gonna
gonna

give you up

let you down

run around and desert you
make you cry

say goodbye

tell a lie and hurt you

Token IDs

GRADION

zoaling business

The context window GRADION

Context Window Limitation

Context Window A Answer lacks complete context

&

g CONVERSATION HISTORY

1
|
|
I
B CONTEXTUAL DATA L — ﬁ: -
|
' LLM

Al Response
Content outside context window are ignored by LLM

&\ FORMATTING INSTRUCTIONS

uuuuuuuuuuu

Prompting 101

GRADIO

Steps of prompting

What is Prompt Engineering?

i ©
involves haad to \’ =4
Crafting and Generate Accurate
Key Principles:
=
=P
(/7 l -—

Be Clear and - Set Format and
[Specific] [Give Context J [Style] [Show Examples]
(®, eoucea

Prompt
Engineering

Elements of LLM Context

4 . N O)
CO ntGXt Instructions / System Prompt
- J
s N [™
State (short-term memory) User Prompt
- SN S
- N ™y
Long-Term Memory Tools
L N\ J
s SE— ™
Retrieved Context Structured Output
O 7~ -/

GRADION

zoaling business

1.System Prompt (Instructional Context) 1.Knowledge Context (Static or Retrieved

1. Defines the AI's role, behavior, tone, and Information)
constraints. 1. Background information available to

2. Often invisible to the user but sets the model (training data, embeddings,
foundational rules (e.g., “You are an expert external retrieval sources).
technical assistant”). 2. Caninclude references, documents, or

3. Guides reasoning style, priority, and how user structured data fetched through RAG or
input is interpreted. tools.

2.User Prompt (Input Context) 2.Memory Context (Dynamic/Session State)

1. The active request or query from the user. 1. Represents conversation

2. Includes explicit instructions (“Explain...”, history and saved facts about the user or
“Write..."”) and implicit signals (style, tone, session.
domain). 2. Enables continuity across turns (e.g.,

3. Primary driver of output — quality depends on referring back to previous answers or
clarity and structure. user preferences).

3. Can be short-term (within one chat) or
long-term (persistent identity, goals,
data).

Elements of a Good Prompt

+ Clear Intent
Specify exactly what you want the model to do (e.g., summarize, analyze, compare).
+ Defined Role/Voice
Assign a perspective or persona (“Act as a security architect...”).
» Contextual Background
Provide relevant details or examples to narrow scope.
* Output Format
Define structure or constraints (e.g., bullet points, table, JSON).
« Tone and Style Guidance
Indicate desired tone (technical, conversational, formal, etc.).
« Evaluation or Goal Criteria
Mention what success looks like (“focus on trade-offs between...”).
* Progressive Refinement
Encourage iterative clarification (“you can ask follow-up questions if unclear”).

Summary

Machine é
+ s =
- Learning

. Artificial
- Intellifence

Generative Al

+

FYY R Y

g+ Agentic Al =*‘6A®

Data

L8068

GRADION

zoaling business

zoaling business

Vibe coding

What is Vibe Coding GRADION

Vibe coding is an Al-assisted software development approach where developers

describe functionality in plain language and a large language model generates the
code.

Rather than carefully crafting and reviewing each line, the human primarily steers the
system through prompts and feedback loops.

This shifts the focus from low-level implementation details to the overall behavior and
feel of the application.

The term was popularized in 2025 to describe this conversational, Al-centric
development style.

GRADION

What is Vibe Coding

e Natural-language prompts are the primary “interface,” replacing most direct editing of
source code.

e Alarge language model generates and iteratively refines the code based on
conversational feedback.

e The human focuses on goals, UX and outcomes, often treating the Al like a coding
agent or teammate.

e Codeis often accepted with minimal manual reading, relying instead on tests,
execution, and further prompting to correct issues.

e It lowers the barrier to entry for non-experts by abstracting away syntax and many
traditional programming details.

Vibe coding issues

Account Verification

We have just sent the code 435841 to your phone
number: xxx-xxx-8247

Please enter the code below to access your account:

Developers in 2020:

function isOdd(num) {

if (num === @) return false;
if (num === 1) return true;
if (num 2) return false;

if (num
if (num

3) return true;
4) return false;
if (n 5) return true;
if (e 6) return false;

i fnum —— T ratie

Developers in 2025:

function is0dd(num) {
const response = OpenAI.prompt('Is ${num} odd?");
return response.content;

GRADION

zoaling business

convert allit

Think and
_‘ write code

Copy code
then run and
then Think

zoaling business

Spec driven
development

GRADION

Spec driven development

Spec driven development is a software methodology where detailed, formal
specifications are created first and then used as the single source of truth for generating
code, tests, and documentation.

In modern Al workflows, these specs are written for both humans and coding agents,
which consume them to produce and evolve the implementation.

This is nothing new... Spec driven development is around since the early 2000s

GRADION

Structured input

e Structured input is key for enterprise ready Al solutions
e By creating specifications in markdown-format you can ensure a sustainable, and
reproduceable quality and output

e The DSPI workflow provides a structured, spec driven approach to Al assisted coding.
e It splits the development lifecycle in 4 phases.

e Those are then worked off in a sequential order with human-in-the loop reviews.

e The phases are Discovery - Specification - Planning - Implementation

DSPI Flow GRADION

Discovery: Understand the system and define the feature. Extract global specs
and write a clear story set describing intent, value, and boundaries.

Specification: Convert the story into precise, technology-agnostic specifications
split by type: business logic, data model, API contract, and Ul design. Resolve
open questions early and link decisions back to the story.

Planning : Translate specifications into an implementation plan: phases, tasks,
testing strategy, risks, and integration notes. Every task maps to a spec, making
scope and success measurable.

Implementation: Execute the plan iteratively. Keep documentation and code
synchronized; validate with automated checks and human review. When tests
pass and specs are satisfied, the feature is complete.

Caveats e

e The creation of meaningful spec files is a challenge, time consuming and needs to be practised.

e Creation of the artefacts is not a 3min task usually...you won’t get magically 10x faster or better.

e Contextis your enemy. The bigger your spec files grow, the more likely you run into issues (most
models start to significantly decrease in accuracy and performance after only 10% usage of their
context window)..use helpers such as Claude skills, or subagents or use small fragmented context

files, that you manually then add to the context.

e Specdriven development is not token-friendly at all and can become quite expensive quite fast

unless you use local models

GRADION
Summary i
Spec driven development (SDD) provides in my opinion a future-proof way of Al assisted coding

Unless the Vibe coding mentality it requires people to have in-depth understanding of domain,
specifications and code

In the optimal scenario your spec is the only source of truth. To change code, you update the
appropriate spec file

A meaningful context handling is essential for getting good results
The process will not make you a 10x employee...if you are really good, maybe 2-3x is possible

Depending on your spec files and [Im provider this is not a cheap thing to do unless you use self-
hosted models

There are several tools out there to support you such as Specs CLI, GitHub SpecKit or Kiro from AWS
(I used Speckit from Github for the demo)

GRADION

List of useful links

https: romptengineering.org/ (Good guide to get tips and tricks for prompt and context engineering)

https://github.com/github/spec-kit (Github Speckit, a framework for Spec Driven A dev)

https://aithub.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum (Raiph Wiggum is a plugin by

Anthropic for Claude Code to improve and assess generated code)

https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview (ntroduction of Claude Agent
Skills)

https://code.claude.com/docs/en/sub-agents (introduction to Claude subagents)

https://github.com/specs-cli/specs-cli (Another Spec Kit....the readme has a nice explanation of the DSPI workflow)

https://roocode.com/ (Persona-based Agentic Al coding assistant, can also connect via Ollama to local models)

https://www.vischer.com/en/artificial-intelligence/ (a very good blog series about legal aspects of Al)

https://promptengineering.org/
https://promptengineering.org/
https://github.com/github/spec-kit
https://github.com/github/spec-kit
https://github.com/github/spec-kit
https://github.com/github/spec-kit
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://code.claude.com/docs/en/sub-agents
https://code.claude.com/docs/en/sub-agents
https://code.claude.com/docs/en/sub-agents
https://code.claude.com/docs/en/sub-agents
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://roocode.com/(persona
https://roocode.com/(persona
https://www.vischer.com/en/artificial-intelligence/
https://www.vischer.com/en/artificial-intelligence/
https://www.vischer.com/en/artificial-intelligence/
https://www.vischer.com/en/artificial-intelligence/

nnnnnnnnnnnnnn

Thanks for your interest! And in case you want
to know more, feel free to contact me!

Jan Moser

jan.moser@gradion.com

mailto:jan.moser@gradion.com

	Slide 1: From Vibe coding to AI assisted spec driven development
	Slide 2: Goals
	Slide 3: AI 101
	Slide 4: The different types of AI
	Slide 5: A typical LLM Agent
	Slide 6: The currency of AI Models
	Slide 7: The context window
	Slide 8: Prompting 101
	Slide 9: Steps of prompting
	Slide 10: Elements of LLM Context
	Slide 11: Summary
	Slide 12: Summary
	Slide 13: Summary
	Slide 14: Vibe coding
	Slide 15: What is Vibe Coding
	Slide 16: What is Vibe Coding
	Slide 17: Vibe coding issues
	Slide 18: Spec driven development
	Slide 19: Spec driven development
	Slide 20: Structured input
	Slide 21: DSPI Flow
	Slide 23: Caveats
	Slide 24: Summary
	Slide 25: List of useful links
	Slide 26

