
January 2026

From Vibe coding to AI assisted
spec driven development

Jan Moser
Principal Consultant at GRADION

GRADION | Scaling Business

Goals

Small sub-headline with descriptive text

● Understanding what Vibe Coding means

● Understanding the basic elements of LLMs and their attributes

● Understanding the importance of context

● Understand what Spec Driven Development is

● Get an impression about how coding this way looks

● Get an overview over the tooling landscape (January 2026)

Takeaways

AI 101

GRADION | Scaling Business

The different types of AI

GRADION | Scaling Business

A typical LLM Agent

GRADION | Scaling Business

The currency of AI Models

GRADION | Scaling Business

The context window

Prompting 101

GRADION | Scaling Business

Steps of prompting

GRADION | Scaling Business

Elements of LLM Context

GRADION | Scaling Business

Summary

1.System Prompt (Instructional Context)
1. Defines the AI’s role, behavior, tone, and

constraints.
2. Often invisible to the user but sets

foundational rules (e.g., “You are an expert
technical assistant”).

3. Guides reasoning style, priority, and how user
input is interpreted.

2.User Prompt (Input Context)
1. The active request or query from the user.
2. Includes explicit instructions (“Explain…”,

“Write…”) and implicit signals (style, tone,
domain).

3. Primary driver of output — quality depends on
clarity and structure.

1.Knowledge Context (Static or Retrieved
Information)

1. Background information available to
the model (training data, embeddings,
external retrieval sources).

2. Can include references, documents, or
structured data fetched through RAG or
tools.

2.Memory Context (Dynamic/Session State)
1. Represents conversation

history and saved facts about the user or
session.

2. Enables continuity across turns (e.g.,
referring back to previous answers or
user preferences).

3. Can be short-term (within one chat) or
long-term (persistent identity, goals,
data).

GRADION | Scaling Business

Summary

Elements of a Good Prompt

• Clear Intent
 Specify exactly what you want the model to do (e.g., summarize, analyze, compare).
• Defined Role/Voice
 Assign a perspective or persona (“Act as a security architect…”).
• Contextual Background

 Provide relevant details or examples to narrow scope.
• Output Format

 Define structure or constraints (e.g., bullet points, table, JSON).
• Tone and Style Guidance

 Indicate desired tone (technical, conversational, formal, etc.).
• Evaluation or Goal Criteria

 Mention what success looks like (“focus on trade-offs between…”).
• Progressive Refinement

 Encourage iterative clarification (“you can ask follow-up questions if unclear”).

GRADION | Scaling Business

Summary

Vibe coding

GRADION | Scaling Business

What is Vibe Coding

● Vibe coding is an AI-assisted software development approach where developers
describe functionality in plain language and a large language model generates the
code.

● Rather than carefully crafting and reviewing each line, the human primarily steers the
system through prompts and feedback loops.

● This shifts the focus from low-level implementation details to the overall behavior and
feel of the application.​

● The term was popularized in 2025 to describe this conversational, AI-centric
development style.

GRADION | Scaling Business

What is Vibe Coding

● Natural-language prompts are the primary “interface,” replacing most direct editing of
source code.​

● A large language model generates and iteratively refines the code based on
conversational feedback.​

● The human focuses on goals, UX and outcomes, often treating the AI like a coding
agent or teammate.​

● Code is often accepted with minimal manual reading, relying instead on tests,
execution, and further prompting to correct issues.​

● It lowers the barrier to entry for non-experts by abstracting away syntax and many
traditional programming details.​

GRADION | Scaling Business

Vibe coding issues

Spec driven
development

GRADION | Scaling Business

Spec driven development

● Spec driven development is a software methodology where detailed, formal
specifications are created first and then used as the single source of truth for generating
code, tests, and documentation.

● In modern AI workflows, these specs are written for both humans and coding agents,
which consume them to produce and evolve the implementation.

● This is nothing new… Spec driven development is around since the early 2000s

GRADION | Scaling Business

Structured input

● The DSPI workflow provides a structured, spec driven approach to AI assisted coding.
● It splits the development lifecycle in 4 phases.
● Those are then worked off in a sequential order with human-in-the loop reviews.
● The phases are Discovery → Specification → Planning → Implementation

● Structured input is key for enterprise ready AI solutions
● By creating specifications in markdown-format you can ensure a sustainable, and

reproduceable quality and output

GRADION | Scaling Business

DSPI Flow

Discovery: Understand the system and define the feature. Extract global specs
and write a clear story set describing intent, value, and boundaries.

Specification: Convert the story into precise, technology-agnostic specifications
split by type: business logic, data model, API contract, and UI design. Resolve

open questions early and link decisions back to the story.

Planning : Translate specifications into an implementation plan: phases, tasks,
testing strategy, risks, and integration notes. Every task maps to a spec, making

scope and success measurable.

Implementation: Execute the plan iteratively. Keep documentation and code
synchronized; validate with automated checks and human review. When tests

pass and specs are satisfied, the feature is complete.

GRADION | Scaling Business

Caveats

● The creation of meaningful spec files is a challenge, time consuming and needs to be practised.

● Creation of the artefacts is not a 3min task usually…you won’t get magically 10x faster or better.

● Context is your enemy. The bigger your spec files grow, the more likely you run into issues (most

models start to significantly decrease in accuracy and performance after only 10% usage of their

context window)..use helpers such as Claude skills, or subagents or use small fragmented context

files, that you manually then add to the context.

● Spec driven development is not token-friendly at all and can become quite expensive quite fast

unless you use local models

GRADION | Scaling Business

Summary

● Spec driven development (SDD) provides in my opinion a future-proof way of AI assisted coding

● Unless the Vibe coding mentality it requires people to have in-depth understanding of domain,
specifications and code

● In the optimal scenario your spec is the only source of truth. To change code, you update the
appropriate spec file

● A meaningful context handling is essential for getting good results

● The process will not make you a 10x employee…if you are really good, maybe 2-3x is possible

● Depending on your spec files and llm provider this is not a cheap thing to do unless you use self-
hosted models

● There are several tools out there to support you such as Specs CLI, GitHub SpecKit or Kiro from AWS
(I used Speckit from Github for the demo)

GRADION | Scaling Business

List of useful links

● https://promptengineering.org/ (Good guide to get tips and tricks for prompt and context engineering)

● https://github.com/github/spec-kit (Github SpecKit, a framework for Spec Driven AI dev)

● https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum (Ralph Wiggum is a plugin by

Anthropic for Claude Code to improve and assess generated code)

● https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview (Introduction of Claude Agent

Skills)

● https://code.claude.com/docs/en/sub-agents (Introduction to Claude subagents)

● https://github.com/specs-cli/specs-cli (Another Spec Kit….the readme has a nice explanation of the DSPI workflow)

● https://roocode.com/ (Persona-based Agentic AI coding assistant, can also connect via Ollama to local models)

● https://www.vischer.com/en/artificial-intelligence/ (a very good blog series about legal aspects of AI)

https://promptengineering.org/
https://promptengineering.org/
https://github.com/github/spec-kit
https://github.com/github/spec-kit
https://github.com/github/spec-kit
https://github.com/github/spec-kit
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://github.com/anthropics/claude-code/tree/main/plugins/ralph-wiggum
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://platform.claude.com/docs/en/agents-and-tools/agent-skills/overview
https://code.claude.com/docs/en/sub-agents
https://code.claude.com/docs/en/sub-agents
https://code.claude.com/docs/en/sub-agents
https://code.claude.com/docs/en/sub-agents
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://github.com/specs-cli/specs-cli
https://roocode.com/(persona
https://roocode.com/(persona
https://www.vischer.com/en/artificial-intelligence/
https://www.vischer.com/en/artificial-intelligence/
https://www.vischer.com/en/artificial-intelligence/
https://www.vischer.com/en/artificial-intelligence/

Thanks for your interest! And in case you want
to know more, feel free to contact me!

Jan Moser
jan.moser@gradion.com

mailto:jan.moser@gradion.com

	Slide 1: From Vibe coding to AI assisted spec driven development
	Slide 2: Goals
	Slide 3: AI 101
	Slide 4: The different types of AI
	Slide 5: A typical LLM Agent
	Slide 6: The currency of AI Models
	Slide 7: The context window
	Slide 8: Prompting 101
	Slide 9: Steps of prompting
	Slide 10: Elements of LLM Context
	Slide 11: Summary
	Slide 12: Summary
	Slide 13: Summary
	Slide 14: Vibe coding
	Slide 15: What is Vibe Coding
	Slide 16: What is Vibe Coding
	Slide 17: Vibe coding issues
	Slide 18: Spec driven development
	Slide 19: Spec driven development
	Slide 20: Structured input
	Slide 21: DSPI Flow
	Slide 23: Caveats
	Slide 24: Summary
	Slide 25: List of useful links
	Slide 26

